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ABSTRACT 

Planetary approach guidance, an on-board optical guidance system 
for a planet-bound spacecraft, functions as the spacecraft approaches 
the target planet. Such a system should attain an accuracy greater 
than that obtainable from Earth-based radio guidance. In this Report, 
the need for planetary approach guidance is discussed, a set of orbital 
parameters especially developed for the problem is presented, and 
analytic differential corrections are derived. Next, covariance matrices 
for orbital parameters are given. Finally, a specific mechanization is 
discussed, measurement errors are described, and parametric curves 

1. INTRODUCTION 

Present injection guidance systems can deliver a space- 
craft to Mars or Venus with an accuracy of about w),0oO 
km (1 a). Earth-based radio midcourse guidance can 
effect a considerable improvement, yielding an accuracy 
of perhaps lo00 km ( 1 a). The errors in radio guidance 
are due to (a) errors in performing midcourse maneuvers 
and (b) orbit-determination errors, which result pri- 
marily from errors in physical constants such as the ephe- 
meris of the target planet and the Astronomical Unit. 

If more accuracy is required, as would be the case in 
landing near a specific point, measurements relating the 
spacecraft directly to the planet are necessary. In this 
Report, a self-contained optical system is analyzed for 
this purpose. As we approach the planet, measurements 
are made of the angles between the target planet and 
other suitable bodies, the orbit is then determined, and 

finally, the necessary maneuvers are computed and exe- 
cuted. Several maneuvers can be made, as needed. 

In Part 11, a set of orbital parameters especially adap- 
ted for this problem is described. In Part 111, an orbit- 
determination accuracy analysis is carried out using these 
parameters. A simplified case is employed in order to 
facilitate the analysis. Of special interest is the way in 
which biases in the measurement data can combine with 
the orbital parameters, and a technique is presented for 
treating this problem. Finally, in Part IV, a specific 
mechanization is described and analyzed. For this mech- 
anization, it is found that accuracy can be improved over 
radio guidance, although not as markedly as might have 
been expected, and that the accuracy is limited by a 
bias in the measurement system which locates the center 
of the planet. 

1 
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II. DEVELOPMENT OF ORBITAL PARAMETERS 

In order to obtain an analytic formulation which will 
facilitate physical insight into this problem, a conic or 
two-body approximation will be employed. This approxi- 
mation agrees well with the true motion out to Egorov’s 
“Sphere of Action” (Ref. l ) ,  which for Mars and Venus 
is about ‘/2 million km. The differential corrections, being 
derivatives, agree somewhat further; the conic differen- 
tial corrections agree with the exact ones to within a few 
per cent out to 4 to 5 million km from Mars or Venus 
(Ref. 2).  Of course, in exact work, precise differential 
corrections computed from an n-body simulation must 
be used. 

For orbit determination, the partial derivatives of ob- 
servables with respect to orbit parameters are required. 
In selecting a set of orbit parameters, we could choose 
the classical elements, or position and velocity at some 
epoch, or any other convenient set. Since, in approach 
guidance, we are especially interested in the amount by 
which the spacecraft misses the planet, a set of orbital 
parameters which includes the miss parameter would 
have advantages. In Ref. 3, the miss or impact para- 
meter B is defined as the vector directed from the center 
of the planet perpendicular to the incoming asymptote 
of the hyperbola. It is resolved into components B * R  
and B T, where R and T are unit vectors perpendicular 
to S, a unit vector along the incoming asymptote; T is 
in a reference plane such as the ecliptic, and R S T form 
a right-hand system. Now, define a coordinate system 
XYZ ( i  j k )  centered at the planet and such that k = 
- S,, i = T,, and j = - R,T, where the subscript s de- 
notes the values on the standard or reference trajectory. 
Then, the first four of our six orbit parameters qj, j = 1, 
2, . 6, are defined as 

q 1 -  - B * i = B * T ,  

q3 = B - j  = - B * R ,  

We use R, and T, instead of R and T in order to prevent 
the XYZ reference coordinate system from changing 
when the trajectory is perturbed. The parameters q1 and 
q3 represent miss distances, and q2 and q4 represent the 

angular orientation of the asymptote; qs  and qs remain 
to be defined. 

Since B S = 0, we have 

s = (S,?, s,, S,) = ( -q2, -q4, -dl - 4; - 4:) 

We shall be interested in the properties of hyperbolas, 
and formulas are presented below for reference. Deriva- 
tions are not given but may be found in the literature 
(e.g., Ref. 4). 

From Fig. 1, 

c2 = A‘ + b‘ 
c e = -  
A 

b = I B l  

V 

(3) 

Fig. 1. Geometry of hyperbola 
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Note that A > 0. If C ,  and C ,  are, respectively, angular 
momentum and vis viva, then b = C,C;'/' and A = p/C,, 
where p is GM for the planet. The vectors shown in Fig. 
1 are all unit vectors except B. 

From Fig. 1, 

A B b  p = s- + -- 
c b c  

b B A  
c b c  

Q = S -  - -- 
(4) 

Now, let F be a quantity which is analogous to the 
eccentric anomaly for ellipses. Reference 4 gives 

A + r = Ae cosh F 
(5) . ( t - T ) =  - F + e s i n h F  

where r is the distance from the focus, T is the time of 
periapsis passage, and I!, the mean motion, is given by 
v = p1I2 We are generally interested in motion 
prior to periapsis and hence, shall use, in Fig. 1, the 
segment of the hyperbola in the lower left-hand quad- 
rant. Thus, F will be negative. 

For simplicity, we shall often use 

coshF = f 

s inhF= - vf'- 1 

?<vir: iiiat Eq. (6j may oniy be used ior P 5 U. 

From Ref. 5, 

r = - AP(coshF - e) + bQ sinhF 

Using Eq. (4) gives 

r = SX + BP 

where 

b2 
e Ae 

X=-- -Af - V f - l + A  

p = 1 -  1 - ( f  e - 

We now return to the definition of q5 and qs. Observe 
that (q,, q,, q3, q 4 )  define the asymptote. (Recall that 
four numbers are required to define a line in three 
dimensions.) It remains, then, to prescribe the motion 
along the asymptote. Time of periapsis and energy would 
appear to be a logical choice. Consider first the time of 
periapsis. From Eq. (S), we have, for F large and negative, 

e 
2 v ( t - T ) -  - F - - e x p - F  

(9) 

Substituting (recall that e is eccentricity), 

v ( t - T ) = -  - A + r  +log2+log(A+r)-logA-loge 
A 

(10) 
Now, A = p/C, ,  and hence, A depends only on the 
energy. But e = (1 + b2/A2)'/*, and thus, the eccen- 
tricity depends on the miss parameter. Of course, we 
expect that for a given energy and initial distance, a 
trajectory which hits the center of the planet would 
arrive at periapsis sooner than a trajectory which misses; 
the time difference is given by A T  = (log e)/v. (Note that 
t - T is negative in the regions of interest.) Since the 
dependence of AT on b is second order, the use of T, 
the time of periapsis, as an orbit parameter may gener- 
ate undesirable nonlinearities. Also, the use of T would 

corrections and those along the asymptote. These difE- 
culties can be circumvented by adjusting the time of 
periapsis by an amount AT. Let 

paqlre Lthormmo nn,.nl;-- I--&----- ' - ~ - - - 1  1.m ' *  ' - - _----I ---_1 ---rAA-& "VI I. ccii I C L L L L ~ I  uuLclcULlaI 

log e q5= T c = T - -  
V 

(11) 
~ ( t  - q5) = log e - F + e sinh F 

Finally, we set qs = C,, where C,, the vis viva, is twice 
the energy and equals the square of the asymptotic 
velocity. 

The differential corrections relating observables to 
orbital parameters are given in the Appendix. 

3 
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111. ORBIT DETERMINATION FOR APPROACH GUIDANCE 

The Gauss-Markov (Ref. 6) formulation will be used 
for orbit determination. In order to illustrate the basic 
character of the process, a simple case will first be treated 
using the following assumptions: 

1. The nominal path hits the center of the planet, and 
in the region of interest, the spacecraft is not near 
the planet; i.e., the path is almost a straight line. 

2. At each of i points, where i = 1, 2, . . *  N, three 
measurements are made: e:, the angle between the 
center of the planet and a star in the direction of 
the + X-axis; 0: , the angle between the center of the 
planet and a star in the fY-direction; and ~ l i ,  the 
angular diameter of the planet. 

3. The noise on the measurements is random and sta- 
tionary; no cross- or auto-correlations are present. 

4. No physical constant uncertainties, data biases, etc., 

5. No a priori data are available. 

are present. 

Later, we shall weaken these assumptions. 

For a hitting trajectory, we can use the position de- 
rivatives of Eq. (A-8). Also, since we assume that the 
spacecraft is not close to the planet, f is large and p N 1. 
From the Appendix, we have U' = (1, 0, 0); thus, from 
Eq. (A-lo), 

where ri is the nominal value of r at the ith measure- 
ment. Also, a e p  = (0, l/ri, 0) and a+hi/ar = (0, 0, 
-d /r : ) .  

Now, let 60' be the column matrix with elements 
80: , i = 1,2, ... N. Similarly, define the column matrices 
602 and 69 .. Finally, let 6 0  be a column matrix with 
(partitioned) elements 601, EO2, and 69. We may then 
write 6 0  = A6q, where A is in the 3N X 6 matrix of 
derivatives of observables (angles) with respect to the 
orbit parameters qj, and 6q is the column matrix of 
perturbations with elements 8qj, j = 1,2, - e .  6. 

By the use of Eqs. (A-9) and (A-11), we have 

A, 8 8 
(13) 

where is the N X 2 zero matrix, A, is N X 2 having 
elements l/ri in the first column and 1's in the second 
column, and A, = A,. Similarly, A, is N X 2 having 
elements drJr; in the first column and l/2riq6 in the 
second column. 

The normal matrix is J = A'L-lA, where the prime 
denotes transpose and is the covariance of the noise on 
the observations. Since we have assumed stationary, 
uncorrelated noise, we may write 

where L i s  3N X 3N, I is the N X N identity matrix, 
and 8 is the N X N zero matrix. The mean-square noise 
on the observations of SO', 8e2, and 8$ are, respectively, 
A:, A:, and A;. 

Finally, 

where J, = (l/h;) A:A,, and J, and J, are similarly 
defined. 

The covariance of 6q*, the estimator of 6q, is the in- 
verse of the normal matrix. If r is the covariance of the 
estimator, then r = J-l. Note that to obtain J-' from Eq. 
(15), we simply invert each partitioned element, letting 
8-1 = 8. 

Observe that the determination of q1 and q2 depends 
only on el, and no correlation exists between the de- 
termination of (q,, q2) and any of the other four param- 
eters. 

Next, write 

where we read ut and u:, respectively, as the variance of 
the estimation of q1 and q2, with p12 being the correlation 

4 
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coefficient. From the preceding, we have 

where 

and in the double sum of Eq. (18), each pair (ri, Ti) is 
taken once and only once. 

From Eqs. (17) and (18), we see, as expected, that a 
single measurement (N = 1) is inadequate to determine 
the orbit. Also, to minimize a:, we would like to choose 
pairs of points (ri, r j )  so as to maximize (l/ri - l/rj)2. 
Indeed, to maximize D, we should take half of the 
measurements at the farthest distance and the other half 
at the closest. In practice, this is probably not feasible, 
and, at any rate, the noise on two closely spaced observa- 
tions is not likely to be uncorrelated. 

Figure 2 illustrates the behavior of u1,u2, and plz. In 
the Figure, it is assumed that ten measurements are made 
(N = lo), and that they are equally spaced between 
rl and rl0. Letting r1 = kr,,, Fig. 2 gives plots of plz, u; 
ul/hlrlo, and u: = uz/hlrlo. Note that plz approaches -1 
as k approaches unity. 

An a priori estimate of the orbit parameters q may be 
available from, say, radio tracking. If this estimate is qt 
with covariance A,, then r = (A;’ + J)-’, where r is 
the covariance of the estimator which combines both 
u priori and tracking data, and J is the normal matrix of 
the tracking data. 

Suppose for simplicity that A, is diagonal. Let the first 
two terms along the diagonal be 8: and 8;; thus, 8, 
represents the uncertainty in our u priori knowledge of 
ql, etc. If r1 is the upper left-hand 2 X 2 matrix in r, 
then we may write 

r1=(” PYlY2 .) 
PYlY2 Y2 

(19) 

IO 

E 

E 

4 

2 

- 
6 

‘b” 

- Y  
Q 

‘ I  

0 

0 

C 

0 

C 

Fig. 2. Accuracy, simplified model, no a priori data 

Proceeding as before, using the data-gathering pattern 
and noise model of the preceding example, 

(W 
where we may regard y 1  as our a posteriori uncertainty 
in ql. In Fig. 3, y: is plotted, where < = yl/Alrlo. The 
data-gathering pattern of Fig. 2 was again used. The four 

5 
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Fig. 3. Accuracy, simplified model, with a priori data 

curves are described as follows: Curve 1, 6, = 8, = 00 

(No a priori data. This is d, of Fig. 2.);  Curve 2, & = 00,  

8 ,  = hlro (A priori data on q1 only.); Curve 3, S1 = to, 
8, = h, (A priori data on q2 only.); Curve 4, 6, = h,r0, 
82 = hl (A priori data on q1 and q2.). As expected, addi- 
tional information diminishes the variance of the estimate. 

Biases may be present in the measurement equipment. 
A bias is defined as an error affecting the measurements 
and fixed over a given experiment. Thus, the biases may 
be treated simply as additional orbit parameters. 

Care must be exercised, however, if the biases affect 
the measurements in the same manner as the orbit 
parameters. For example, in the case just treated, we 
have (for straight-line motion) el - ~ / 2  = q l / r  + q2. 
If a bias qi is present in the apparatus which measures 
4, we observe, instead, q J r  + q2 + qi. Thus, q2 and qi 
oeeur in linear combination and cannot be dissociated 
by observing 8'. If q7 is included as an orbit parameter, 
J will be singular. Of course, a priori data afford a con- 
ditioning which may permit to exist. 

For almost straight-line motion, angle biases corrupt 
q2 and q4; similarly, biases in locating the center of the 
planet corrupt q1 and q3, assuming that this bias is some 
fraction of the diameter of the planet (rather than a fixed 
angle), as would occur when the sensor which is attempt- 
ing to locate the center of the planet selects some fixed 
point other than the center (of the visible disk) and 
judges this fixed point to be the center. 

Even without a priori data, we can estimate q2 and q4 
when angle biases are present; similarly, we can estimate 
q1 and q3 when planet-sensor biases are present. How- 
ever, when both types of bias are present, neither (ql, 
q3)  nor (q2 ,  q4) can be estimated without a priori data. 
(Note that in the near vicinity of the planet, the curva- 
ture of the trajectory will permit the orbit parameters to 
be distinguished from the biases.) 

We may generalize by  writing 

60 = A,6q, = (AT) ( 6q) = A6q + T6qb 
'qb 

where A, = (AT), 60 is the measurements, and 6q, 
is the extended matrix of generalized orbit parameters 
consisting of the original parameters 6q and biases 6 q b .  

Suppose now that in Eq. (21) a linear combination of 
6q and 6qb exists which our measurements (character- 
ized by A?) do not permit us to separate. Then, we 
should be able to write 60 = A(6q + c6qb); hence, 
T = AC, where C describes the linear relationships be- 
tween biases and orbit parameters. 

Note that if we define 6Q such that 6Q = (IC)Bq,, 
where I is the identity matrix, we have 60 = A6Q. 
Therefore, if biases are present but are unknown or 
ignored, it is 6Q that we estimate rather than 6q. 

Finally, we shall develop an expression which displays 
the effects of the linearly dependent biases on the de- 

6 
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termination of the orbit parameters 6q, when a priori 
data are available. Let 

where, as before, A, is the covariance of our a priori 
knowledge of 6q, B is the covariance of our a priori 
knowledge of the biases 6qb, and Q is a zero matrix. Let- 
ting J, = A;A-l A,, r;1= Ail+  J,. By the use of the 
matrix identity given in Ref. 7, we can show that r,,, the 
a posteriori covariance of 6q, i.e., the upper left-hand 
portion of re, is given by 

(24 r-1 = A;I + (J-1 + c B c y  
where, as before, J = A'k'A. 

Finally, the Schmidt-Kalman form is given. Suppose 
that prior to the (i + 1) measurement point we have an 

estimator of the orbital parameters (including biases) 
with covariance T i .  Suppose further that at the ( i  + 1) 
point, we make measurementjs) having partial deriva- 
tives Ai+l and (measurement) covariance l ~ i + ~ .  Then, if 
the noise on the (i + 1) measurements is not correlated 
with previous data, we have, from Ref. 6 ,  r;tl = r;' + 
A;+l A;:, Ai+'. Using again the identity from Ref. 7, we 
obtain 

The estimator may be obtained similarly. This form, 
which is due to Schmidt (Ref. 8) and Kalman (Ref. 9), is 
convenient when estimates and/or covariances are de- 
sired at each measurement point. 

IV. RESULTS FOR A SPECIFIC MECHANIZATION 

It is assumed that the spacecraft is oriented by a two- 
axis Sun sensor which points the roll axis toward the 
Sun, and by a single-axis star sensor which acquires the 
star Canopus and holds the spacecraft fixed in roll. An 
optical device which measures the angular diameter of 
the planet and finds the center of the visible disk com- 
pletes the measurement system.* The angle between the 
Sun and the planet, called the cone angle, is taken as one 
measurement type; the angle between the Sun-space- 
craft-planet and Sun-spacecraft-canopus planes, called 
the clock angle, as the second. (Notice that cone and 
clock angles are analogous to colatitude and longitude, 
respectively, on a celestial sphere with the Sun at the 
pole.) The angular diameter of the planet is the third 
measurement type. The errors in cone and clock angles 
may be correlated at each measurement point, since each 
uses the planet-center finder as well as common mount- 
ings and compounds. These correlations can be handled 

*The Sun sensor and the star tracker have been mechanized and 
used. The Celestial Sensors Croup of the Guidance and Control 
Division at JPL is designing an instrument to be used to locate 
the center of a partially illuminated disk as well as to measure 
its angular diameter. 

easily by the techniques described earlier if one assumes 
that there is no correlation between adjacent measure- 
ment points. 

The system described above has been simulated with 
an IBM 7094 program using the differential correction 
formulas of the Appendix. Both Gauss-Markov and 
Schmidt-Kalman forms were programmed; the numerical 
results obtained were identical providing that the a priori 
covariance matrix was adequate to prevent ill-conditioning 
of the a posteriori covariance matrix. 

A typical trajectory, launched December 22, 1966, and 
reaching closest approach to Mars on July 11, 1967, was 
used to illustrate the results of this on-board system. The 
encounter geometry is such that the orbital parameters 
are q' = (14,000 km; 0; -5OOO km; 0; 0; 40.3 kmz/sec2). 

For the purposes of this study, a relatively pessimistic 
a priori covariance matrix was generated by mapping the 
results of a hypothetical post-midcourse orbit determina- 
tion to the parameters used to describe the approach 
trajectory. It was assumed that the orbit determination 

7 
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had standard deviations associated with velocity com- 
ponents of 0.003 m/sec along the velocity vector and 
0.03 m/sec perpendicular to it and with position com- 
ponents of 30 km in each direction, with epoch at mid- 
course time. 

A standard measurement pattern is defined to be 100 
measurements spaced at equal intervals, the first at 4X loo 
km and the last at 0.2 x 10" km. The cone- and clock- 
angle measurements were assumed to have gaussian 
noise with standard deviations of 0.1 and 0.16 mr, re- 
spectively, and a correlation coefficient of 0.01. The noise 
on the planetary angular-diameter measurements was 
assumed gaussian with a standard deviation of 1.0 mr.* 
The biases, though constant for any given flight, are zero 
mean gaussian variables for an ensemble of flights. The 
cone- and clock-angle biases were assumed to have 
standard deviations of 1.0 and 1.9 mr, respectively, with 
a correlation coefficient of 0.05. The planet-center finder 
bias was assumed to have a standard deviation of 100 km 
in two orthogonal directions. 

*The approach phase begins when the angular diameter is 0.1 
deg, at which time its measurements are much less precise than 
the other two angular measurements and do not contribute sig- 
nificantly to the orbit determination. 

200 

I 1 I I 
0 I 2 3 4 

R, millions of km 

Fig. 4. Accuracy, hypothetical system, variations in 
noise and measurement interval 

The quality of the orbit determination is described by 
the covariance matrix of the estimator. Table 1 gives the 
complete covariance of the estimator for the standard 
case. The first six parameters correspond to those previ- 
ously described; the other four are defined in the Table. 
Considering that the primary purpose of approach guid- 
ance is to pass the planet at some specific position, 
u = (u: + u;)','', the root-mean-square of the standard 
deviations about the estimate of the position coordinates, 
is used as a figure of merit. Figures 4 and 5 show u as a 
function of range. Figure 4 shows the effect of noise as 
well as the effect of varying the measurement density. 

ff. millions of km 

Fig. 5. Accuracy, hypothetical system, variations in bias 
and initial conditions 

a 
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i 

Table 1. Covariance of the estimator 

jth orbitai parameter Standard deviation I 

0.427 
1 

(Symmetric) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

~ ~~~ 

-0.246 0.141 -0.130 
- 0.045 0.470 -0.135 

1 -0505 0.046 
1 -0.237 

1 

q1 
9 2  

q a  

q, 
q s  
9r 
Bias on cone angle 
Bias on clock angle 
Center-finder bias in direction of ql 
Center-finder bias in direction of q a  -- 

7 

10 

Correlations bohween orbit parameters ( p a ,  = p , J  

2 1 3 1  4 I 5  

Notice that increasing the measurement density has 
exactly the same effect as decreasing the noise. Figure 5 
shows the effect of angle bias, planet-center finder bias, 
and a priori data. Notice that the biases degrade the 
orbit parameters when measurements start, but that after 
enough data have been accumulated to estimate those 
biases accurately, they no longer affect the estimate of 
the orbit parameters. The limiting factor on the orbit- 
determination accuracy is seen to be the planet-center 

6 

0.347 
0.240 
0.339 
0.1 84 

-0563 
1 

7 

107.3 km 
0.0592 mr 
81.0 km 
0.0500 mr 
152.6 sec 
0.00194 km'fsec' 
0.0309 mr 
0.0546 mr 
69.6 km 
71.4 km 

0,166 
0.596 
0.174 

-0.336 
-0.208 

0.407 
1 

8 

0.254 
0.331 

- 0.351 
0.495 

-0534 
0.400 
0.119 
1 

9 

0.970 
0.238 

-0.642 
0.419 

-0.517 
0.207 
0.097 
0.207 

1 

0.91 6 
0.207 

-0.081 
0.152 

-0592 
0.370 
0.059 

-0.055 
0.181 

finder biases. During the approach phase, the partial 
denvatives oi obsexvabies wth respect to the positions 
q1 and q3 are the same as with respect to these biases, 
and so their errors are combined. 

Additional results which have been obtained include 
the magnitude, optimal spacing, and execution error ef- 
fects of approach guidance maneuvers (Ref. 10) and 
effects of drifts superimposed on the biases (Ref. 11). 

9 
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APPENDIX 
Differential Corrections 

We require positional digerential corrections ar/aqj, 
i = 1, 2, ..-, 6. From Eq. (8), we have 

From Eq. (2), we have 

-- as - 0, 0, 0 i = 1, 3, 5, 6 
aqi 

- 0, -1,- 9 2  - _  as - = - l ,O, -  
a92 g a94 g 

391 g 

a92 

a94 

94 2s 

- _  aB - 1,0, -1 9 

-- 

- _ - _  aB - aB - 0, 0,o -=o0,1,  aB -4. 
a93 g aq5 aq6 

To obtain the remaining terms of Eq. (A-l), we use 
Eqs. (8) and (lo), recalling that A = ~ / 9 ~ ,  e = c/A, and 
bz = + 9; + k'/gz, from which derivatives abz/aqj 
can be obtained. 

Note that 

and 

In differentiating Eq. (8), we shall obtain terms af/a9j, 
which can be obtained from Eq. ( l l ) ,  yielding 

Substituting gives 

4 

(-4-5) 

i = 1,2, 3, 4 

(A-6) 

ab 
a95 

961'2 f -df - 1 - _  
Ae 1-ef 
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We may also require 2r/aqj, which can be obtained 
from Eq. (5 )  and is given by 

d m  1 - e d F  
1 - ef 

i = 1,2,3,4 

(A-7) 

The velocity differential corrections a;Bqj may be 
obtained by the above technique and will not be given 
here. 

In order to gain some insight into the nature of these 
differential corrections, let us examine the trajectory 
which passes through the center of the planet. Here we 
have b = 0, e = 1, etc. We find 

ar 
- 0, r, 0 ar - -  - p , o , o  -- 

a41 394 

The presence of zeros, especially in the Z-positions of 
the ql, q2, q3, and q4 derivatives and in the X- and Y- 
positions for the q5 and (76 derivatives, indicates that the 
decoupling has been successful. Note that is negative 
in the region of interest. 

If we are far away from the planet, such that f is 
large, a few simplifications occur for the hitting case. 
Including the velocity differential corrections, we may 
write: 6x = L6q, where 6x is a column matrix with 

12 

elements ( a x ,  &, ay, a$, 62, ai), 6q is a column matrix 
with elements 6qj, and 

(A-9) 

where 

We may easily invert L, and L and L-' may be checked 
by referring to elementary principles. 

It remains, finally, to find the derivatives of observ- 
ables with respect to the qj. Since the observables, being 
angles, are functions only of position, our task is easy. 
Let e be the angle observed at the spacecraft between 
the center of the planet and a star. If U' = ( V i ,  U i  , Vi) 
is a unit vector from spacecraft to star and R' a unit 
vector from spacecraft to planet, then cos e = U1*R1. 
Now, R1 = -r/r, where r is the position vector from 
planet to spacecraft in our XYZ-system. Differentiating 
the above expression with respect to x, using ar/ax = x/r,  
and assuming that the star is infinitely far away such that 
U1 is not a function of position, we have 

X u: +-mse ae r (A-IO) 

The derivatives with respect to x and y are obtained 
similarly. 

To obtain aO/aqj, we use 

- - - -+ - -+ - -  ae - ae ax ae ay ae az (A-11) 
aqj ax aqj ay aqj az aqj 
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A 
A 

b 
B 

C 

c1 

C S  

C 
d 
e 

f 
F 
G 
i 
I 

i 
J 
k 

k 
L 

M 
M 
N 
P 
P 
Q 

4; 
Q 

r 
r 
r 

NOMENCLATURE* 

Magnitude of semitransverse axis of hyperbola 
Matrix of partial derivatives of observables with respect to orbit 

parameters 
Magnitude of semiconjugate axis of hyperbola 
Vector from center of planet to incoming asymptote with magnitude b; 
a priori covariance matrix of estimate of biases 
Half the distance between the foci of the hyperbola 
Specific angular momentum 
Twice the specific energy; vis viva 
Matrix describing linear relationships, biases, and orbit parameters 
Diameter of planet 
Eccentricity 
Hyperbolic cosine of F 
Analog of eccentric anomaly for hyperbola 
Universal gravitational constant 
Unit vector in direction of standard T vector 
Identity matrix 
Unit vector in direction opposite to standard R vector 
Normal matrix 
Hatio of first to tenth measurement distance in exampie in Secriun 

Unit vector in direction opposite to standard S vector 
Matrix of partial derivatives of position and velocity with respect to 
orbit parameters 
Mass of planet 
A submatrix of L 
A submatrix of L 
Semilatis rectum 
Unit vector from focus toward periapsis 
Vector of estimated parameters 
Orbital parameters; i = 1,2, . .-, 6; biases; i = 7,8,9, 10 
Unit vector in direction of velocity vector at periapsis; vector of 
linear combinations of biases and orbit parameters 
Distance from planet to spacecraft 
Rate of change of r 
Vector from planet to spacecraft 

*Some symbols have been used in more than one way. The proper meaning should be clear from 
the context in which the symbol is used. 
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NOMENCLATURE (Cont’d) 

Unit vector to complete right-hand system R S T 
Unit vector from spacecraft to planet 
Unit vector along incoming asymptote 
Time 
Time of periapsis 
Linearized flight time 
Unit vector perpendicular to S and in standard reference plane; matrix 
of partial derivatives of observables with respect to biases 
Unit vector from spacecraft to star 
Vector of position and velocity components 
Cartesian coordinate system with basis vectors i, j, k 
r B/b2 
Normalized a posteriori uncertainty in qi 

A posteriori covariance matrix of estimated parameters 
A priori standard deviation of estimate on qi 
Measured angle: cone angle, i = 1 ; clock angle, i = 2 
Vector of measured angles 
Standard deviation of noise on measurement type i 

Covariance matrix of noise on measurements 
A priori covariance matrix of estimated parameters 
Product of G and M ; p = GM 
Analog of mean angular motion 
Correlation coefficient between ith and jth parameters 
Standard deviation of ith parameter 
Normalized a posteriori uncertainty in qi 
r * S  
Supplement of true anomaly along asymptote 
A zero matrix 
Measured planetary angular diameter 
Vector of measured planetary angular diameters 
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